Pineview Elementary School

Mrs. Austin

Topic: Weather/Precipitation

Purpose:

What happens when a cloud gets too full of water?

Hypothesis:

Half the class thinks the "cloud" will stay the same. The other thinks the blue water will fall down like rain .

Materials:

Clear cup/jar
Water
Blue Food coloring
Dropper or spoon
Shaving Cream
ENTHUSIASM!

Procedures:

- 1.Fill the cup up ¾ full with water
- 2.Add a fluffy cloud (shaving cream) on top
- 3.Mix blue food coloring with water in a separate cup.
- 4.Using a spoon drop water onto the shaving cream

Data:

SC.K.E.7.4 This experiment relies entirely on observation of change

Results:

The blue water fell through the shaving cream and dropped into the water below- just like rain falling from the clouds.

SC.K.N.1.2 —This experiment represents how clouds form rain and helps students understand precipitation and weather

Conclusion:

When clouds fill with too much water- the water falls down as rain.

We learned how precipitation works and how clouds make rain.

Acknowledgements:

Thank you to all the scientists and meteorologists that help keep us in the know of how our weather changes! We see the weather daily on our school news and now we understand one element a little bit better! The science of weather is so fun!

Pineview Elementary School; Tallahassee,

Kindergarten- Miss A Jefferson's Kinder-stars' Rainbow Skittle Fiesta!

Purpose The purpose of our experiment is to observe what happens to Skittles when they are placed in warm water and to see how the colors move and mix.
This helps students learn about dissolving and how liquids can change solids

hypothesis: We believe that water will fully absorb a paper towel, cotton ball, napkin and paper bag. Additionally, we think that water will not successfully absorb a plastic bag or aluminum foil sheet.

Materials

- 1. 1sponge
- 2. plastic lid
- 3. napkin
- 4. foil
- 5. skiffle packed
- 6. sock
- 7. zip lock bag
- 8. paper towel
- 9. sandwich wrap
- 10. construction paper
- 11. aluminum foil
- 12. cotton balls

Procedures

- 1. Make predictions about the materials that will be absorbed by water and what will be repellant against water.
- 2. Fill an eye dropper or straw with colored water and squeeze onto each materials.
- 3. Using observation skills and appropriate senses, identify which materials absorb water and which do not.
- 4. Complete the chart recording these findable results

Results: As a result, we were able to identify that all paperbased products such as napkins, paper towels and tissue were easily absorbed by water.

The Science: Water, rather known as H20, is highly compatible with the chemical makeup of paper-based products and as a result, is able to be fully absorbed by these materials. Materials that absorb water are described as porous. Porous means capable of absorbing liquids. Porous materials have pores or openings that allow air or water to pass through easily. Materials that repel water or don't absorb water are called nonporous.

Pineview Elementary School; Tallahassee, Fl

Kindergarten: Ms.Williams

Purpose: The purpose of our experimentThe purpose of the Dancing Raisins experiment is to help students observe how gas bubbles can make an object sink and rise in a liquid. Students learn about buoyancy, density, and how carbon dioxide (CO₂) gas affects movement in water or soda.

Hypothesis: We think that the raisins will "dance" when baking soda is added in the Ginger Ale Soda, but not when baking soda is added to the water.

Materials:

- 1. 2 Clear Cups of Equal Size
- 2. Water
- 3. Ginger Ale
- 4. Baking Soda
- 5. Spoons
- 6. Raisins

Procedures:

- Prepare the liquids.
- •Pour **8–10 oz** of carbonated soda into a clear cup. Pour the same amount of water into a separate clear cup.
- Add Raisins
- •Add **1–2 teaspoons baking soda** and stir
 - •Show the raisins to students.
- Observe the reaction.
- •Watch as the raisins sink to the bottom.
- •Point out gas bubbles forming on the raisin's wrinkles.
- •Identify the movement.
- •Students observe bubbles popping → raisins getting heavy → sinking again.
- •Continue observing for 2–3 minutes.

Results: After our experiment we observed that the water transferred from the full jars to the empty jar via the toilet paper. The two colors mixed and made a new color.

Conclusion: Our results show the raisins danced in the carbonated soda due to carbon dioxide gas bubbles attaching to their surface, causing them to rise and fall. In the plain water, the raisins did not dance because no gas bubbles formed, so the raisins remained at the bottom."

